Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
J Am Chem Soc ; 145(24): 13204-13214, 2023 06 21.
Article in English | MEDLINE | ID: covidwho-20236265

ABSTRACT

We report the results of computational modeling of the reactions of the SARS-CoV-2 main protease (MPro) with four potential covalent inhibitors. Two of them, carmofur and nirmatrelvir, have shown experimentally the ability to inhibit MPro. Two other compounds, X77A and X77C, were designed computationally in this work. They were derived from the structure of X77, a non-covalent inhibitor forming a tight surface complex with MPro. We modified the X77 structure by introducing warheads capable of reacting with the catalytic cysteine residue in the MPro active site. The reaction mechanisms of the four molecules with MPro were investigated by quantum mechanics/molecular mechanics (QM/MM) simulations. The results show that all four compounds form covalent adducts with the catalytic cysteine Cys 145 of MPro. From the chemical perspective, the reactions of these four molecules with MPro follow three distinct mechanisms. The reactions are initiated by a nucleophilic attack of the thiolate group of the deprotonated cysteine residue from the catalytic dyad Cys145-His41 of MPro. In the case of carmofur and X77A, the covalent binding of the thiolate to the ligand is accompanied by the formation of the fluoro-uracil leaving group. The reaction with X77C follows the nucleophilic aromatic substitution SNAr mechanism. The reaction of MPro with nirmatrelvir (which has a reactive nitrile group) leads to the formation of a covalent thioimidate adduct with the thiolate of the Cys145 residue in the enzyme active site. Our results contribute to the ongoing search for efficient inhibitors of the SARS-CoV-2 enzymes.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cysteine , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Molecular Docking Simulation
2.
Chembiochem ; 24(11): e202300116, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2300345

ABSTRACT

While vaccines and antivirals are now being deployed for the current SARS-CoV-2 pandemic, we require additional antiviral therapeutics to not only effectively combat SARS-CoV-2 and its variants, but also future coronaviruses. All coronaviruses have relatively similar genomes that provide a potential exploitable opening to develop antiviral therapies that will be effective against all coronaviruses. Among the various genes and proteins encoded by all coronaviruses, one particularly "druggable" or relatively easy-to-drug target is the coronavirus Main Protease (3CLpro or Mpro), an enzyme that is involved in cleaving a long peptide translated by the viral genome into its individual protein components that are then assembled into the virus to enable viral replication in the cell. Inhibiting Mpro with a small-molecule antiviral would effectively stop the ability of the virus to replicate, providing therapeutic benefit. In this study, we have utilized activity-based protein profiling (ABPP)-based chemoproteomic approaches to discover and further optimize cysteine-reactive pyrazoline-based covalent inhibitors for the SARS-CoV-2 Mpro. Structure-guided medicinal chemistry and modular synthesis of di- and tri-substituted pyrazolines bearing either chloroacetamide or vinyl sulfonamide cysteine-reactive warheads enabled the expedient exploration of structure-activity relationships (SAR), yielding nanomolar potency inhibitors against Mpro from not only SARS-CoV-2, but across many other coronaviruses. Our studies highlight promising chemical scaffolds that may contribute to future pan-coronavirus inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cysteine , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation
3.
Commun Biol ; 6(1): 450, 2023 04 24.
Article in English | MEDLINE | ID: covidwho-2304980

ABSTRACT

Addressing the elusive specificity of cysteine cathepsins, which in contrast to caspases and trypsin-like proteases lack strict specificity determining P1 pocket, calls for innovative approaches. Proteomic analysis of cell lysates with human cathepsins K, V, B, L, S, and F identified 30,000 cleavage sites, which we analyzed by software platform SAPS-ESI (Statistical Approach to Peptidyl Substrate-Enzyme Specific Interactions). SAPS-ESI is used to generate clusters and training sets for support vector machine learning. Cleavage site predictions on the SARS-CoV-2 S protein, confirmed experimentally, expose the most probable first cut under physiological conditions and suggested furin-like behavior of cathepsins. Crystal structure analysis of representative peptides in complex with cathepsin V reveals rigid and flexible sites consistent with analysis of proteomics data by SAPS-ESI that correspond to positions with heterogeneous and homogeneous distribution of residues. Thereby support for design of selective cleavable linkers of drug conjugates and drug discovery studies is provided.


Subject(s)
COVID-19 , Cysteine , Humans , Proteomics , SARS-CoV-2
4.
J Med Chem ; 66(4): 3088-3105, 2023 02 23.
Article in English | MEDLINE | ID: covidwho-2265584

ABSTRACT

Interest in covalent enzyme inhibitors as therapeutic agents has seen a recent resurgence. Covalent enzyme inhibitors typically possess an organic functional group that reacts with a key feature of the target enzyme, often a nucleophilic cysteine residue. Herein, the application of small, modular ReV complexes as inorganic cysteine-targeting warheads is described. These metal complexes were found to react with cysteine residues rapidly and selectively. To demonstrate the utility of these ReV complexes, their reactivity with SARS-CoV-2-associated cysteine proteases is presented, including the SARS-CoV-2 main protease and papain-like protease and human enzymes cathepsin B and L. As all of these proteins are cysteine proteases, these enzymes were found to be inhibited by the ReV complexes through the formation of adducts. These findings suggest that these ReV complexes could be used as a new class of warheads for targeting surface accessible cysteine residues in disease-relevant target proteins.


Subject(s)
COVID-19 , Cysteine Proteases , Cysteine Proteinase Inhibitors , Cysteine , Rhenium , SARS-CoV-2 , Humans , Cysteine Proteases/metabolism , Enzyme Inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/therapeutic use
5.
J Med Chem ; 66(4): 2663-2680, 2023 02 23.
Article in English | MEDLINE | ID: covidwho-2252997

ABSTRACT

Nirmatrelvir (PF-07321332) is a nitrile-bearing small-molecule inhibitor that, in combination with ritonavir, is used to treat infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Nirmatrelvir interrupts the viral life cycle by inhibiting the SARS-CoV-2 main protease (Mpro), which is essential for processing viral polyproteins into functional nonstructural proteins. We report studies which reveal that derivatives of nirmatrelvir and other Mpro inhibitors with a nonactivated terminal alkyne group positioned similarly to the electrophilic nitrile of nirmatrelvir can efficiently inhibit isolated Mpro and SARS-CoV-2 replication in cells. Mass spectrometric and crystallographic evidence shows that the alkyne derivatives inhibit Mpro by apparent irreversible covalent reactions with the active site cysteine (Cys145), while the analogous nitriles react reversibly. The results highlight the potential for irreversible covalent inhibition of Mpro and other nucleophilic cysteine proteases by alkynes, which, in contrast to nitriles, can be functionalized at their terminal position to optimize inhibition and selectivity, as well as pharmacodynamic and pharmacokinetic properties.


Subject(s)
Antiviral Agents , COVID-19 , Coronavirus 3C Proteases , Nitriles , SARS-CoV-2 , Viral Protease Inhibitors , Humans , Antiviral Agents/pharmacology , Cysteine/chemistry , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Viral Protease Inhibitors/pharmacology
6.
Res Microbiol ; 173(8): 103983, 2022.
Article in English | MEDLINE | ID: covidwho-2287502

ABSTRACT

The OsnR protein functions as a transcriptional repressor of genes involved in redox-dependent stress responses. Here, we studied Corynebacterium glutamicum ORF ncgl0127 (referred to as cysS in this study), one of the target genes of OsnR, to reveal its role in osnR-mediated stress responses. The ΔcysS strain was found to be a cysteine auxotroph, and the transcription levels of the sulfur assimilatory genes and cysR, the master regulatory gene for sulfur assimilation, were low in this strain. Complementation of the strain with cysR transformed the strain into a cysteine prototroph. Cells challenged with oxidants or cysteine showed transcriptional stimulation of the cysS gene and decreased transcription of the ncgl2463 gene, which encodes a cysteine/cystine importer. The transcription of the ncgl2463 gene was increased in the ΔcysS strain and further stimulated by cysteine. Unlike the wild-type strain, ΔcysS cells grown with an excess amount of cysteine showed an oxidant- and alkylating agent-resistant phenotype, suggesting deregulated cysteine import. Collectively, our data suggest that the cysS gene plays a positive role in sulfur assimilation and a negative role in cysteine import, in particular in cells under oxidative stress.


Subject(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genetics , Cysteine/metabolism , Sulfur/metabolism , Oxidative Stress , Oxidation-Reduction
7.
Eur J Med Chem ; 244: 114803, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2286080

ABSTRACT

SARS-CoV-2 3CL protease is one of the key targets for drug development against COVID-19. Most known SARS-CoV-2 3CL protease inhibitors act by covalently binding to the active site cysteine. Yet, computational screens against this enzyme were mainly focused on non-covalent inhibitor discovery. Here, we developed a deep learning-based stepwise strategy for selective covalent inhibitor screen. We used a deep learning framework that integrated a directed message passing neural network with a feed-forward neural network to construct two different classifiers for either covalent or non-covalent inhibition activity prediction. These two classifiers were trained on the covalent and non-covalent 3CL protease inhibitors dataset, respectively, which achieved high prediction accuracy. We then successively applied the covalent inhibitor model and the non-covalent inhibitor model to screen a chemical library containing compounds with covalent warheads of cysteine. We experimentally tested the inhibition activity of 32 top-ranking compounds and 12 of them were active, among which 6 showed IC50 values less than 12 µM and the strongest one inhibited SARS-CoV-2 3CL protease with an IC50 of 1.4 µM. Further investigation demonstrated that 5 of the 6 active compounds showed typical covalent inhibition behavior with time-dependent activity. These new covalent inhibitors provide novel scaffolds for developing highly active SARS-CoV-2 3CL covalent inhibitors.


Subject(s)
COVID-19 Drug Treatment , Deep Learning , Humans , SARS-CoV-2 , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Coronavirus 3C Proteases , Cysteine , Antiviral Agents/pharmacology
9.
Biosensors (Basel) ; 13(2)2023 Jan 26.
Article in English | MEDLINE | ID: covidwho-2215583

ABSTRACT

The demand for new devices that enable the detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) at a relatively low cost and that are fast and feasible to be used as point-of-care is required overtime on a large scale. In this sense, the use of sustainable materials, for example, the bio-based poly (ethylene terephthalate) (Bio-PET) can be an alternative to current standard diagnostics. In this work, we present a flexible disposable printed electrode based on a platinum thin film on Bio-PET as a substrate for the development of a sensor and immunosensor for the monitoring of COVID-19 biomarkers, by the detection of L-cysteine and the SARS-CoV-2 spike protein, respectively. The electrode was applied in conjunction with 3D printing technology to generate a portable and easy-to-analyze device with a low sample volume. For the L-cysteine determination, chronoamperometry was used, which achieved two linear dynamic ranges (LDR) of 3.98-39.0 µmol L-1 and 39.0-145 µmol L-1, and a limit of detection (LOD) of 0.70 µmol L-1. The detection of the SARS-CoV-2 spike protein was achieved by both square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) by a label-free immunosensor, using potassium ferro-ferricyanide solution as the electrochemical probe. An LDR of 0.70-7.0 and 1.0-30 pmol L-1, with an LOD of 0.70 and 1.0 pmol L-1 were obtained by SWV and EIS, respectively. As a proof of concept, the immunosensor was successfully applied for the detection of the SARS-CoV-2 spike protein in enriched synthetic saliva samples, which demonstrates the potential of using the proposed sensor as an alternative platform for the diagnosis of COVID-19 in the future.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , Platinum , Biosensing Techniques/methods , Cysteine , Electrochemical Techniques/methods , Immunoassay/methods
10.
Eur J Med Chem ; 249: 115129, 2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2178287

ABSTRACT

The 3C-like protease (3CLpro) is essential for the replication and transcription of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), making it a promising target for the treatment of corona virus disease 2019 (COVID-19). In this study, a series of 2,3,5-substituted [1,2,4]-thiadiazole analogs were discovered to be able to inhibit 3CLpro as non-peptidomimetic covalent binders at submicromolar levels, with IC50 values ranging from 0.118 to 0.582 µM. Interestingly, these compounds were also shown to inhibit PLpro with the same level of IC50 values, but had negligible effect on proteases such as chymotrypsin, cathepsin B, and cathepsin L. Subsequently, the antiviral abilities of these compounds were evaluated in cell-based assays, and compound 6g showed potent antiviral activity with an EC50 value of 7.249 µM. It was proposed that these compounds covalently bind to the catalytic cysteine 145 via a ring-opening metathesis reaction mechanism. To understand this covalent-binding reaction, we chose compound 6a, one of the identified hit compounds, as a representative to investigate the reaction mechanism in detail by combing several computational predictions and experimental validation. The process of ring-opening metathesis was theoretically studied using quantum chemistry calculations according to the transition state theory. Our study revealed that the 2,3,5-substituted [1,2,4]-thiadiazole group could covalently modify the catalytic cysteine in the binding pocket of 3CLpro as a potential warhead. Moreover, 6a was a known GPCR modulator, and our study is also a successful computational method-based drug-repurposing study.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Peptide Hydrolases , Cysteine , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Cysteine Endopeptidases/metabolism , Antiviral Agents/chemistry
11.
Inflamm Res ; 72(3): 475-491, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2173971

ABSTRACT

BACKGROUND: Cysteinyl leukotrienes (CysLT) are potent inflammation-promoting mediators, but remain scarcely explored in COVID-19. We evaluated urinary CysLT (U-CysLT) relationship with disease severity and their usefulness for prognostication in hospitalized COVID-19 patients. The impact on U-CysLT of veno-venous extracorporeal membrane oxygenation (VV-ECMO) and of comorbidities such as hypertension and obesity was also assessed. METHODS: Blood and spot urine were collected in "severe" (n = 26), "critically ill" (n = 17) and "critically ill on VV-ECMO" (n = 17) patients with COVID-19 at days 1-2 (admission), 3-4, 5-8 and weekly thereafter, and in controls (n = 23) at a single time point. U-CysLT were measured by ELISA. Routine markers, prognostic scores and outcomes were also evaluated. RESULTS: U-CysLT did not differ between groups at admission, but significantly increased along hospitalization only in critical groups, being markedly higher in VV-ECMO patients, especially in hypertensives. U-CysLT values during the first week were positively associated with ICU and total hospital length of stay in critical groups and showed acceptable area under curve (AUC) for prediction of 30-day mortality (AUC: 0.734, p = 0.001) among all patients. CONCLUSIONS: U-CysLT increase during hospitalization in critical COVID-19 patients, especially in hypertensives on VV-ECMO. U-CysLT association with severe outcomes suggests their usefulness for prognostication and as therapeutic targets.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , Leukotrienes , Biomarkers , Cysteine , Retrospective Studies
12.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2163439

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds to the cellular receptor-angiotensin-converting enzyme-2 (ACE2) as the first step in viral cell entry. SARS-CoV-2 spike protein expression in the ACE2-expressing cell surface induces cell-cell membrane fusion, thus forming syncytia. To exert its fusogenic activity, the spike protein is typically processed at a specific site (the S1/S2 site) by cellular proteases such as furin. The C488 residue, located at the spike-ACE2 interacting surface, is critical for the fusogenic and infectious roles of the SARS-CoV-2 spike protein. We have demonstrated that the C488 residue of the spike protein is involved in subcellular targeting and S1/S2 processing. C488 mutant spike localization to the Golgi apparatus and cell surface were impaired. Consequently, the S1/S2 processing of the spike protein, probed by anti-Ser-686-cleaved spike antibody, markedly decreased in C488 mutant spike proteins. Moreover, brefeldin-A-mediated endoplasmic-reticulum-to-Golgi traffic suppression also suppressed spike protein S1/S2 processing. As brefeldin A treatment and C488 mutation inhibited S1/S2 processing and syncytia formation, the C488 residue of spike protein is required for functional spike protein processing.


Subject(s)
Golgi Apparatus , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/genetics , COVID-19/virology , Cysteine/genetics , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
13.
Biomolecules ; 12(11)2022 11 11.
Article in English | MEDLINE | ID: covidwho-2109924

ABSTRACT

Gold compounds have a long tradition in medicine and offer many opportunities for new therapeutic applications. Herein, we evaluated the lead compound Auranofin and five related gold(I) complexes as possible inhibitors of SARS-CoV-2 Main Protease (SARS-CoV-2 Mpro), a validated drug target for the COVID-19 disease. The investigational panel of gold compounds included Auranofin; three halido analogues, i.e., Au(PEt3)Cl, Au(PEt3)Br, and Au(PEt3)I; and two gold carbene complexes, i.e., Au(NHC)Cl and [Au(NHC)2]PF6. Notably, all these gold compounds, with the only exception of [Au(NHC)2]PF6, turned out to be potent inhibitors of the catalytic activity of SARS-CoV-2 Mpro: the measured Ki values were in the range 2.1-0.4 µM. The reactions of the various gold compounds with SARS-CoV-2 Mpro were subsequently investigated through electrospray ionization (ESI) mass spectrometry (MS) upon a careful optimization of the experimental conditions; the ESI MS spectra provided clear evidence for the formation of tight metallodrug-protein adducts and for the coordination of well defined gold-containing fragments to the SARS-CoV-2 Mpro, again with the only exception of [Au(NHC)2]PF6, The metal-protein stoichiometry was unambiguously determined for the resulting species. The crystal structures of the metallodrug- Mpro adducts were solved in the case of Au(PEt3)Br and Au(NHC)Cl. These crystal structures show that gold coordination occurs at the level of catalytic Cys 145 in the case of Au(NHC)Cl and at the level of both Cys 145 and Cys 156 for Au(PEt3)Br. Tight coordination of gold atoms to functionally relevant cysteine residues is believed to represent the true molecular basis of strong enzyme inhibition.


Subject(s)
Auranofin , COVID-19 Drug Treatment , Humans , Auranofin/pharmacology , Viral Proteins/chemistry , SARS-CoV-2 , Gold Compounds/pharmacology , Cysteine , Gold/pharmacology
14.
J Med Chem ; 65(20): 13852-13865, 2022 10 27.
Article in English | MEDLINE | ID: covidwho-2062145

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has necessitated the development of antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 3C-like protease (3CLpro) is a promising target for COVID-19 treatment. Here, we report a new class of covalent inhibitors of 3CLpro that possess chlorofluoroacetamide (CFA) as a cysteine-reactive warhead. Based on an aza-peptide scaffold, we synthesized a series of CFA derivatives in enantiopure form and evaluated their biochemical efficiency. The data revealed that 8a (YH-6) with the R configuration at the CFA unit strongly blocks SARS-CoV-2 replication in infected cells, and its potency is comparable to that of nirmatrelvir. X-ray structural analysis showed that YH-6 formed a covalent bond with Cys145 at the catalytic center of 3CLpro. The strong antiviral activity and favorable pharmacokinetic properties of YH-6 suggest its potential as a lead compound for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Coronavirus 3C Proteases , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Protease Inhibitors/chemistry , Cysteine , Cysteine Endopeptidases/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Peptides/chemistry
15.
J Mol Model ; 28(11): 354, 2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2059878

ABSTRACT

The papain-like protease (PLpro) from SARS-CoV-2 is an important target for the development of antivirals against COVID-19. The safe drug disulfiram (DSF) presents antiviral activity inhibiting PLpro in vitro, and it is under clinical trial studies, indicating to be a promising anti-COVID-19 drug. In this work, we aimed to understand the mechanism of PLpro inhibition by DSF and verify if DSF metabolites and derivatives could be potential inhibitors too. Molecular docking, DFT, and ADMET techniques were applied. The carbamoylation of the active site cysteine residue by DSF metabolite (DETC-MeSO) is kinetically and thermodynamically favorable (ΔG‡ = 3.15 and ΔG = - 12.10 kcal mol-1, respectively). Our results strongly suggest that the sulfoxide metabolites from DSF are promising covalent inhibitors of PLpro and should be tested in in vitro and in vivo assays to confirm their antiviral action.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Clinical Trials as Topic , Computational Chemistry , Cysteine , Disulfiram/metabolism , Disulfiram/pharmacology , Humans , Molecular Docking Simulation , Papain , Peptide Hydrolases , Protease Inhibitors/chemistry , Sulfoxides
16.
ACS Chem Biol ; 17(10): 2911-2922, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2050257

ABSTRACT

Using the regioselective cyanobenzothiazole condensation reaction with an N-terminal cysteine and the chloroacetamide reaction with an internal cysteine, a phage-displayed macrocyclic 12-mer peptide library was constructed and subsequently validated. Using this library in combination with iterative selections against two epitopes from the receptor binding domain (RBD) of the novel severe acute respiratory syndrome virus 2 (SARS-CoV-2) Spike protein, macrocyclic peptides that strongly inhibit the interaction between the Spike RBD and angiotensin-converting enzyme 2 (ACE2), the human host receptor of SARS-CoV-2, were identified. The two epitopes were used instead of the Spike RBD to avoid selection of nonproductive macrocyclic peptides that bind RBD but do not directly inhibit its interactions with ACE2. Antiviral tests against SARS-CoV-2 showed that one macrocyclic peptide is highly potent against viral reproduction in Vero E6 cells with an EC50 value of 3.1 µM. The AlphaLISA-detected IC50 value for this macrocyclic peptide was 0.3 µM. The current study demonstrates that two kinetically controlled reactions toward N-terminal and internal cysteines, respectively, are highly effective in the construction of phage-displayed macrocyclic peptides, and the selection based on the SARS-CoV-2 Spike epitopes is a promising methodology in the identification of peptidyl antivirals.


Subject(s)
Bacteriophages , COVID-19 Drug Treatment , Humans , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Epitopes/metabolism , Peptide Library , Cysteine/metabolism , Protein Binding , Peptides/pharmacology , Peptides/metabolism , Antiviral Agents/pharmacology , Bacteriophages/metabolism
17.
J Med Chem ; 65(19): 12500-12534, 2022 10 13.
Article in English | MEDLINE | ID: covidwho-2050246

ABSTRACT

The viral main protease is one of the most attractive targets among all key enzymes involved in the SARS-CoV-2 life cycle. Covalent inhibition of the cysteine145 of SARS-CoV-2 MPRO with selective antiviral drugs will arrest the replication process of the virus without affecting human catalytic pathways. In this Perspective, we analyzed the in silico, in vitro, and in vivo data of the most representative examples of covalent SARS-CoV-2 MPRO inhibitors reported in the literature to date. In particular, the studied molecules were classified into eight different categories according to their reactive electrophilic warheads, highlighting the differences between their reversible/irreversible mechanism of inhibition. Furthermore, the analyses of the most recurrent pharmacophoric moieties and stereochemistry of chiral carbons were reported. The analyses of noncovalent and covalent in silico protocols, provided in this Perspective, would be useful for the scientific community to discover new and more efficient covalent SARS-CoV-2 MPRO inhibitors.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus 3C Proteases , Cysteine , Cysteine Endopeptidases/metabolism , Humans , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2 , Structure-Activity Relationship , Viral Nonstructural Proteins
18.
Int J Mol Sci ; 23(18)2022 Sep 12.
Article in English | MEDLINE | ID: covidwho-2039868

ABSTRACT

The development of a strategy to investigate interfacial phenomena at lipid membranes is practically useful because most essential biomolecular interactions occur at cell membranes. In this study, a colorimetric method based on cysteine-encapsulated liposomes was examined using gold nanoparticles as a probe to provide a platform to report an enzymatic activity at lipid membranes. The cysteine-encapsulated liposomes were prepared with varying ratios of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol through the hydration of lipid films and extrusions in the presence of cysteine. The size, composition, and stability of resulting liposomes were analyzed by scanning electron microscopy (SEM), dynamic light scattering (DLS), nuclear magnetic resonance (NMR) spectroscopy, and UV-vis spectrophotometry. The results showed that the increased cholesterol content improved the stability of liposomes, and the liposomes were formulated with 60 mol % cholesterol for the subsequent experiments. Triton X-100 was tested to disrupt the lipid membranes to release the encapsulated cysteine from the liposomes. Cysteine can induce the aggregation of gold nanoparticles accompanying a color change, and the colorimetric response of gold nanoparticles to the released cysteine was investigated in various media. Except in buffer solutions at around pH 5, the cysteine-encapsulated liposomes showed the color change of gold nanoparticles only after being incubated with Triton X-100. Finally, the cysteine-encapsulated liposomal platform was tested to report the enzymatic activity of phospholipase A2 that hydrolyzes phospholipids in the membrane. The hydrolysis of phospholipids triggered the release of cysteine from the liposomes, and the released cysteine was successfully detected by monitoring the distinct red-to-blue color change of gold nanoparticles. The presence of phospholipase A2 was also confirmed by the appearance of a peak around 690 nm in the UV-vis spectra, which is caused by the cysteine-induced aggregation of gold nanoparticles. The results demonstrated that the cysteine-encapsulated liposome has the potential to be used to investigate biological interactions occurring at lipid membranes.


Subject(s)
Liposomes , Metal Nanoparticles , Cholesterol , Cysteine , Dimyristoylphosphatidylcholine , Gold/chemistry , Liposomes/chemistry , Metal Nanoparticles/chemistry , Octoxynol , Phospholipases , Phospholipids , Phosphorylcholine
19.
Phys Chem Chem Phys ; 24(38): 23391-23401, 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-2036938

ABSTRACT

The main protease (Mpro) of the SARS-CoV-2 virus is an attractive therapeutic target for developing antivirals to combat COVID-19. Mpro is essential for the replication cycle of the SARS-CoV-2 virus, so inhibiting Mpro blocks a vital piece of the cell replication machinery of the virus. A promising strategy to disrupt the viral replication cycle is to design inhibitors that bind to the active site cysteine (Cys145) of the Mpro. Cysteine targeted covalent inhibitors are gaining traction in drug discovery owing to the benefits of improved potency and extended drug-target engagement. An interesting aspect of these inhibitors is that they can be chemically tuned to form a covalent, but reversible bond, with their targets of interest. Several small-molecule cysteine-targeting covalent inhibitors of the Mpro have been discovered-some of which are currently undergoing evaluation in early phase human clinical trials. Understanding the binding energetics of these inhibitors could provide new insights to facilitate the design of potential drug candidates against COVID-19. Motivated by this, we employed rigorous absolute binding free energy calculations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations to estimate the energetics of binding of some promising reversible covalent inhibitors of the Mpro. We find that the inclusion of enhanced sampling techniques such as replica-exchange algorithm in binding free energy calculations can improve the convergence of predicted non-covalent binding free energy estimates of inhibitors binding to the Mpro target. In addition, our results indicate that binding free energy calculations coupled with multiscale simulations can be a useful approach to employ in ranking covalent inhibitors to their targets. This approach may be valuable in prioritizing and refining covalent inhibitor compounds for lead discovery efforts against COVID-19 and other coronavirus infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus 3C Proteases , Cysteine , Cysteine Endopeptidases/metabolism , Humans , Molecular Docking Simulation , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/metabolism
20.
Int J Mol Sci ; 23(16)2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-2023734

ABSTRACT

Heavy metal ions can disrupt biological functions via multiple molecular mechanisms, including inhibition of enzymes. We investigate the interactions of human papain-like cysteine endopeptidases cathepsins L, K, and S with gallium and cerium ions, which are associated with medical applications. We compare these results with zinc and lead, which are known to inhibit thiol enzymes. We show that Ga3+, Ce3+, and Ce4+ ions inhibit all tested peptidases with inhibition constants in the low micromolar range (between 0.5 µM and 10 µM) which is comparable to Zn2+ ions, whereas inhibition constants of Pb2+ ions are one order of magnitude higher (30 µM to 150 µM). All tested ions are linear specific inhibitors of cathepsin L, but cathepsins K and S are inhibited by Ga3+, Ce3+, and Ce4+ ions via hyperbolic inhibition mechanisms. This indicates a mode of interaction different from that of Zn2+ and Pb2+ ions, which act as linear specific inhibitors of all peptidases. All ions also inhibit the degradation of insoluble elastin, which is a common target of these peptidases in various inflammatory diseases. Our results suggest that these ions and their compounds have the potential to be used as cysteine cathepsin inhibitors in vitro and possibly in vivo.


Subject(s)
Cerium , Gallium , Cathepsin K/metabolism , Cathepsins/metabolism , Cysteine , Cysteine Proteinase Inhibitors/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Endopeptidases/metabolism , Humans , Ions , Kinetics , Lead
SELECTION OF CITATIONS
SEARCH DETAIL